Community Water Center Drinking Water Tool 2024 Well Impact Analysis Update

Summary

Two well impact analyses were performed to update the Community Water Center's (CWC) Drinking Water Tool with potential domestic well impacts in California's Central Valley under recent groundwater elevation and Sustainable Groundwater Management Act (SGMA)-related conditions based on data available in January 2024. First, we used cleaned domestic well data to assess whether wells were predicted to be "fully dewatered" (i.e., the well has gone dry and can no longer draw water), "partially dewatered" (i.e., surrounding groundwater levels have lowered and reduced the well's capacity to draw water), or "not impacted" by depth-to-groundwater levels for the Fall 2022 and Spring 2023 seasons. Second, we analyzed the number of domestic wells within California's Central Valley that would be fully dewatered, partially dewatered, or unimpacted if groundwater levels were to reach the depth to Minimum Thresholds (MT) and Measurable Objectives (MO) set by Groundwater Sustainability Agencies (GSAs) in their Groundwater Sustainability Plans (GSPs). Below, we provide an overview of these analyses and final processing steps taken to aggregate the results to Public Land Survey System (PLSS) sections (approximately 1 square-mile sections). More detailed methodology documentation is available <u>here</u>.

Contact: cpace@berkeley.edu

Table of Contents:

- 1. Methods for Cleaning and Processing Domestic Well Data for Analysis.
- 2. Method for comparing each well's perforated interval to groundwater depth.
- 3. Method for evaluating impact of Sustainable Management Criteria (SMC) on domestic wells.
- 4. Final processing steps for the Drinking Water Tool.

1. Methods for Cleaning and Processing Domestic Well Data for Analysis.

1.1. Downloaded and cleaned domestic well dataset.

The Water Equity Science Shop (WESS) downloaded well locations from the Department of Water Resources' (DWR's) Online System for Well Completion Reports (OSWCR) via the California Open Data Portal webpage on January 27, 2024 (Department of Water Resources, 2024a). WESS selected domestic wells drilled on or after January 1, 1970 and removed duplicate well records.

1.2. Determined depth of well and perforated interval (Figure 1).

Under the direction of CWC, EKI Environment and Water, Inc identified wells with reasonable values for the perforated interval, according to the following criteria.

- **1.2.1.** Top of perforated interval was at least 20 ft below the ground surface (ft bgs).
- **1.2.2.** Top of perforated interval was shallower than bottom of perforated interval.
- **1.2.3.** Bottom of perforated interval was shallower than the total well depth.
 - **1.2.3.1.** If this condition was not met, value for bottom of perforated interval was flagged and later replaced with a value equal to 80% of total completed depth (DWR, Water Well Standards, 2024).
- **1.2.4.** Bottom of perforated interval was at least 80% of total well depth.
 - **1.2.4.1.** If this condition was not met, value for bottom of perforated interval was flagged and later replaced with a value equal to 80% of total completed depth.

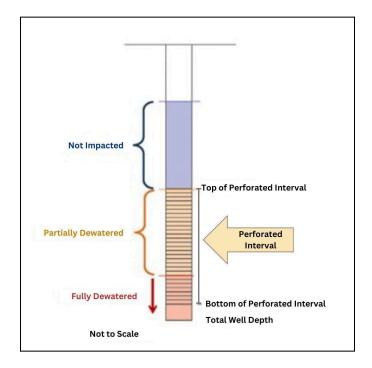


Figure 1. Perforated Interval and well impact definitions.

1.3. Selected study extent.

EKI clipped the domestic well dataset to the Central Valley Basin (DWR, 2019).

1.4. Designated aquifer for each well.

EKI used USGS spatial datasets for Corcoran Clay thickness and depth (USGS, 2024) and assigned depth and thickness to each domestic well location. The Corcoran Clay layer separates the "upper aquifer" (above the clay) from the "lower aquifer" (below the clay), which is useful for understanding drought vulnerability. Based on the location of the well's perforated interval relative to the Corcoran Clay layer (above, intersecting, or below), wells were assigned to an aquifer using the following guidelines (**figure 2**). Only wells located in the upper aquifer were retained for the first drought analysis based on SGMA related conditions from Fall 2022 and Spring 2023.

- **1.4.1.** Wells were identified as "upper aquifer" in the following circumstances:
 - **1.4.1.1.** Both Corcoran Clay depth and Corcoran Clay thickness values were available and the perforated interval was above the Corcoran Clay depth and Corcoran Clay thickness.
 - **1.4.1.2.** OR, both Corcoran Clay depth and Corcoran Clay thickness values were missing for wells (in this case the wells were assumed to be outside of the extent of the Corcoran Clay and therefore in the upper aquifer).
- **1.4.2.** Wells were identified as "lower aquifer" when both Corcoran Clay depth and Corcoran Clay thickness values were available and the well's perforated interval was below the Corcoran Clay depth and Corcoran Clay thickness.
- **1.4.3.** Wells were classified as "composite" when the perforated interval intersected with the Corcoran Clay depth or thickness.
- **1.4.4.** Wells were classified as "lower or composite" when they received a value for Corcoran Clay depth that was above the bottom of the well's perforated interval, but were missing a value for Corcoran Clay thickness.

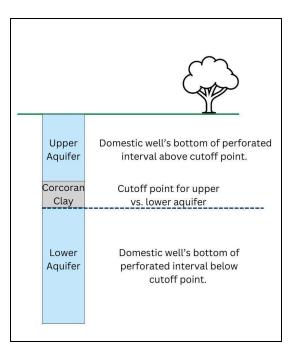


Figure 2. Domestic wells in the upper vs. lower aquifer.

Table	1.	SUMMARY	TABLE
-------	----	---------	-------

Data Source	Well Type	Number of Records		
Cleaned Well Completion Report	Total Wells in Dataset	N = 162,591		
dataset from CWC	Central Valley Domestic Wells	N = 46,187		
	By well perforation information:			
	Wells with missing/erroneous top of perforation values	N = 1,353		
	Wells with bottom of perforation values replaced with 80% of total well depth	N = 2,902		
	Wells with retained top and bottom of perforation values	N = 42,411		
	By aquifer designations:			
	Upper Aquifer Wells (included in analysis)	N = 42,171		
	Lower Aquifer Wells	N = 3,281		
	Composite Wells	N = 367		
	Lower Aquifer or Composite Wells	N = 368		

Table 2. ATTRIBUTE TABLE

domestic_wells_cleaned_prj.shp			
Field Heading	Field Type	Field Description	Source
FID	Long	FID	ESRI generated
WCRNUMBER	String	Well identification code (WCR)	OSWCR
DATE_WRK_ENDED	Long	Date of well construction completion	OSWCR
TOTALCOMPLETEDDEPTH	Long	Total completed depth (ft bgs)	OSWCR
TOPOFPERFORATEDINTER VAL	Long	Depth to well's top of perforated interval (ft bgs)	OSWCR
BOTTOMOFPERFORATEDIN TERVAL	Long	Depth to well's bottom of perforated interval (ft bgs)	OSWCR
CASINGDIAMETER	Long	Casing diameter with "0" values recorded as "-9999"	OSWCR
PLANNEDUSEFORMERUSE	String	Well's intended use, or past use (if retired)	OSWCR
DECIMALLATITUDE	Doubl e	Latitude of well location	OSWCR
DECIMALLONGITUDE	Doubl e	Longitude of well location	OSWCR
WELLLOCATION	String	Street address of well	OSWCR
CITY	String	City of well location	OSWCR
RECORDTYPE	String	Well entry type in OSWCR dataset	OSWCR
LLACCURACY	String	Accuracy of longitude and latitude coordinates	OSWCR
TOTALDRILLDEPTH	String	Total well depth (ft bgs)	OSWCR
TOTALDRILL	Long	Total well depth, with "NA" in place of missing values	OSWCR
TOP_20	String	"Error" if top of perforated interval was less than 20 ft bgs or negative. Equal to "TOPOFPERFORATEDINTERVAL" if greater than 20 ft bgs.	Calculated

domestic_wells_cleaned_prj.shp			
Field Heading	Field Type	Field Description	Source
ORIGINAL_BOTTOM	String	"Yes" if original bottom of perforated interval was greater than 80% of the total well depth. "No" otherwise.	Calculated
BOTTOM_80_OR_REPLACE D	Long	Equal to BOTTOMOFPERFORATEDINTERVA L if ORIGINAL_BOTTOM was "Yes". Equal to 0.8*TOTALCOMPLETED DEPTH otherwise.	Calculated
СС_ТНІСК	Doubl e	Extracted Corcoran Clay Thickness value in ft	USGS
CC_BOT_DEPTH	Doubl e	Extracted depth to bottom of Corcoran clay in ft bgs	USGS
DESGINATION	String	Well designation calculated based on method specified above	Calculated

2. Method for comparing each well's perforated interval to groundwater depth.

EKI evaluated groundwater levels for each well at two points in time: Fall 2022 and Spring 2023 using seasonal groundwater measurements maintained in the DWR Enterprise Water Management database. Then each well was predicted as "not impacted", "partially dewatered", or "fully dewatered" based on conditions in Fall 2022 and Spring 2023 for each time point (**figure 3**).

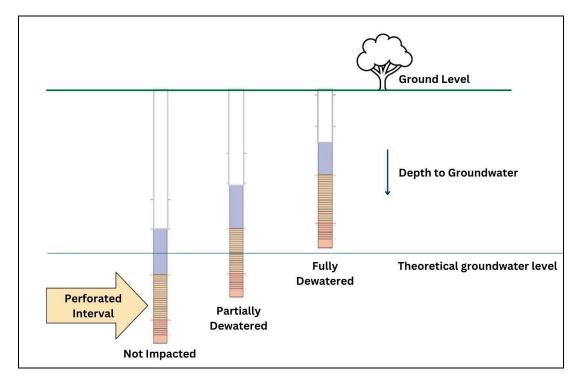
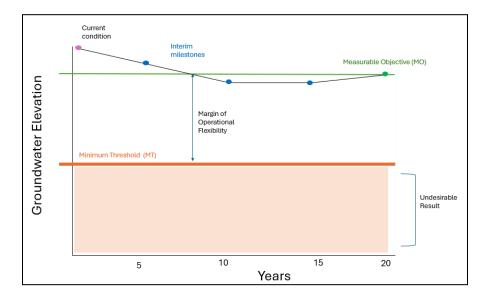


Figure 3. Example of well depth compared to theoretical depth to groundwater level.

Well Type	Number of Records
Upper Aquifer Wells	N = 42,171
Not Impacted	N = 31,986 (76%)
Partially Dewatered	N = 4,040 (10%)
Fully Dewatered	N = 5,029 (12%)
Unable to Determine	N = 1,010 (2%)
Not Included in the Analysis	N = 106 (0.3%)

Table 4. Spring 2023 Well Impact Analysis Results

Well Type	Number of Records
Upper Aquifer Wells	N = 42,171
Not Impacted	N = 33,756 (80%)
Partially Dewatered	N = 3,534 (8%)


Fully Dewatered	N = 3,705 (9%)
Unable to Determine	N = 1,070 (3%)
Not Included in the Analysis	N = 106 (0.3%)

3. Method for evaluating impact of Sustainable Management Criteria (SMC) on domestic wells.

3.1. Sustainable Management Criteria for Representative Monitoring Wells.

EKI downloaded DWR's "Sustainable Management Criteria (SMC) (New – Under Development)" (CNRA, GSP Monitoring Data, 2024). This dataset includes information on Measurable Objectives (MOs) and Minimum Thresholds (MTs) for the Chronic Lowering of Groundwater Levels sustainability indicator for 3,139 Representative Monitoring Wells (RMWs), submitted by the respective Groundwater Sustainability Agencies (GSAs). The Measurable Objective (MO) represents a specific, quantifiable goal for maintaining or improving groundwater level conditions to achieve the overall sustainability goal and avoid undesirable results (defined as: significant and unreasonable declines in groundwater levels, reductions in groundwater storage, intrusion of seawater, degradation of water quality, subsidence of land, and depletions of interconnected surface waters). The Minimum Threshold (MT) represents the water level at which undesirable results are expected to occur. **Figure 4** displays theoretical values for achieving sustainable management over 20 years. Depth data is reported in units of feet above mean sea level (ft amsl).

Note: Some GSAs are revising their GSPs so the MTs and MOs may be out of date if amended after July 2022. Revised levels will be incorporated into future Drinking Water Tool updates.

Figure 4. Example of measurable objective, minimum threshold, and interim milestones for a representative monitoring well (RMW) in a theoretical groundwater sustainability plan.

3.2. RMW Locations.

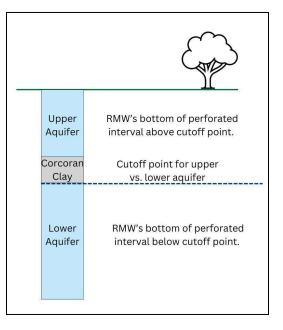
Spatial data (coordinates) for the RMW locations were downloaded from the DWR's "Groundwater Sustainability Plan (GSP) Monitoring Sites (New – Under Development)" dataset (CNRA, GSP, Monitoring Sites, 2024) (Number of records "N" = 6,194). This dataset was used to obtain spatial data for the RMWs in the SMC dataset.

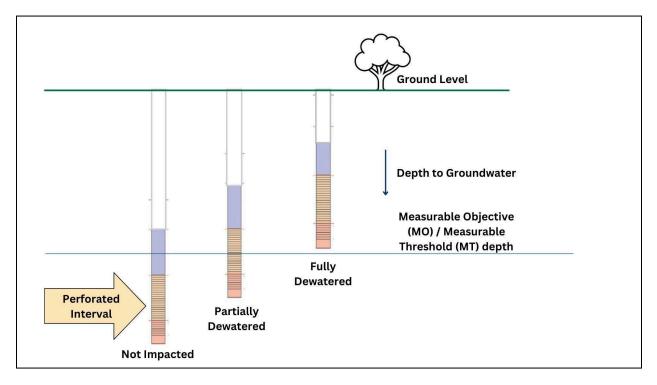
3.3. Combined SMC data and RMW Location data.

The two datasets (SMC information and RMW Locations) were combined so that each RMW had both SMC and location data. Only wells with *both* SMC and location data were retained for the analysis (N = 2,614).

3.4. Designated aquifer for each RMW.

RMWs were then classified into Upper and Lower Aquifers based on depth of the monitoring well's perforated interval relative to the Corcoran Clay layer, following the same method outlined in section 1.4 (**figure 5**). Wells designated as "Lower Aquifer", "Lower Aquifer or Composite", or "Composite" were included in the Lower Aquifer Well Impact Analysis.




Figure 5. Representative monitoring wells (RMWs) in Upper vs. Lower aquifer.

3.5. Estimated SMC values across aquifers.

SMC values (MO/MTs) for RMWs were used to estimate SMC values across each aquifer (upper and lower aquifer).

3.6. Method for comparing each domestic well's perforated interval to SMC values.

Domestic wells were assigned SMC values (MO/MTs) based on the well's designation as upper or lower aquifer (see step 1.4). The perforated intervals for domestic wells were compared to the MO/MTs to determine whether the well would be "not impacted", "partially dewatered", or "fully dewatered" (**figure 6**). Results are included in Tables 3-6.

Figure 6. Example of well depth compared to Measurable Objective (MO) or Measurable Threshold (MT) depths.

Well Type	Number of Records
Upper Aquifer Wells	N = 42,171
Not Impacted	N = 29,124 (69%)
Partially Dewatered	N = 3,808 (9%)
Fully Dewatered	N = 7,844 (19%)
Unable to Determine	N = 767 (2%)
Not Included in the Analysis	N = 628 (1%)

Table 6. Upper Aquifer MT Well Impact Analysis Results

Well Type	Number of Records
Upper Aquifer Wells	N = 42,171
Not Impacted	N = 24,419 (58%)
Partially Dewatered	N = 4,492 (11%)
Fully Dewatered	N = 11,993 (28%)
Unable to Determine	N = 608 (1%)
Not Included in the Analysis	N = 659 (2%)

 Table 7. Lower Aquifer MO Well Impact Analysis Results

Well Type	Number of Records
Lower Aquifer Wells	N = 4,016
Not Impacted	N = 3,342 (83%)
Partially Dewatered	N = 340 (8%)
Fully Dewatered	N = 226 (6%)
Unable to Determine	N = 99 (3%)
Not Included in the Analysis	N = 9 (0.2%)

Table 8. Lower Aquifer MT Well Impact Analysis Results

Well Type	Number of Records
Lower Aquifer Wells	N = 4,016
Not Impacted	N = 2,448 (61%)
Partially Dewatered	N = 516 (13%)
Fully Dewatered	N = 976 (24%)
Unable to Determine	N = 67 (2%)
Not Included in the Analysis	N = 9 (0.2%)

4. Final processing steps for the Drinking Water Tool.

- **4.1.** WESS researchers aggregated the results from the SMC analysis to PLSS sections.
- **4.2.** WESS researchers calculated the number of domestic wells (in both upper and lower aquifers) fully dewatered and partially dewatered under MT and MO conditions.

Geographic Coordinate System	NAD 1983	Projected Coordinate System	NAD 1983 (Teale) Albers (Meters)
WKID	4269	Projection	3310
Authority	EPSG	Authority	EPSG
Angular Unit	Degree (0.0174532925199433)	Linear Unit	Meters (1.0)
Prime Meridian	Greenwich (0.0)	False Easting	0.00
Datum	D North American 1983	False Northing	-4000000.0
Spheroid	GRS 1980	Central Meridian	-120.0
Semimajor Axis	6378137.0	Standard Parallel 1	34.0
Semiminor Axis	6356752.314140356	Standard Parallel 2	40.5
Inverse Flattening	298.257222101	Latitude of Origin	0.0

Table 9. Spatial Reference

Table 10. ATTRIBUTE TABLE

drought_analysis_plss_061224.shp				
Field Heading	Field Type	Field Description	Source	
FID	Object ID	FID	ESRI generated	
Shape	Geometry	Polygon	ESRI generated	
MTRS	Text	Meridian, Township, Range, Section (MTRS); PLSS identifier	CA.gov	
Up_well_n	Float	Number of domestic wells in the analysis located in the upper aquifer.	EKI	
Low_well_n	Float	Number of domestic wells in the analysis located in the lower aquifer.	EKI	
Up_MT_full	Float	Number of wells in the upper aquifer fully dewatered under MT conditions.	EKI	

drought_analysis_	drought_analysis_plss_061224.shp				
Field Heading	Field Type	Field Description	Source		
Low_MT_ful	Float	Number of wells in the lower aquifer fully dewatered under MT conditions.	EKI		
Up_MT_part	Float	Number of wells in the upper aquifer partially dewatered under MT conditions.	EKI		
Low_MT_par	Float	Number of wells in the lower aquifer partially dewatered under MT conditions.	EKI		
Up_MO_full	Float	Number of wells in the upper aquifer fully dewatered under MO conditions.	EKI		
Low_MO_ful	Float	Number of wells in the lower aquifer fully dewatered under MO conditions.	EKI		
Up_MO_part	Float	Number of wells in the upper aquifer partially dewatered under MO conditions.	EKI		
Low_MO_par	Float	Number of wells in the lower aquifer partially dewatered under MO conditions.	EKI		
wells_n	Float	Total number of wells included in the analysis.	EKI		
MT_fully	Float	Total number of wells fully dewatered under MT conditions.	EKI		
MT_partial	Float	Total number of wells partially dewatered under MT conditions.	EKI		
MO_fully	Float	Total number of wells fully dewatered under MO conditions.	EKI		
MO_partial	Float	Total number of wells partially dewatered under MO conditions.	EKI		
Shape_Leng	Double	GIS generated – length in meters	ESRI generated		
Shape_Area	Double	GIS generated – area in square meters	ESRI generated		

References

- Department of Water Resources. (2019). California's Groundwater (Bulletin 118). <u>https://water.ca.gov/programs/groundwater-management/bulletin-118</u>
- Department of Water Resources. (2024a). California Open Data Portal, Well Completion Reports, accessed January 27, 2024. <u>https://water.ca.gov/Programs/Groundwater-Management/Wells/Well-Completion-Report</u> <u>s</u>
- Department of Water Resources. (2024b). GSP Monitoring Data, Sustainable Management Criteria (SMC) (New – Under development), accessed February 5, 2024. <u>https://data.cnra.ca.gov/dataset/gspmd</u>
- Department of Water Resources. (2024c). GSP Monitoring Data, GSP Monitoring Sites (New Under Development), accessed February 5, 2024. <u>https://data.cnra.ca.gov/dataset/gspmd</u>
- Department of Water Resources. (2024d). Sustainable Groundwater Management Act Portal's Monitoring Network Module (MNM), accessed February 5, 2024. <u>https://sgma.water.ca.gov/SgmaWell/</u>
- Department of Water Resources. (2024e). Water Well Standards (Bulletins 74-81 & 74-90 combined), Part II. Water Well Construction. <u>https://water.ca.gov/Programs/Groundwater-Management/Wells/Well-Standards/Combined-Well-Standards/Water-Construction</u>
- Eastern Tule GSA. (2022). Groundwater Sustainability Plan for the Tule Basin. https://sgma.water.ca.gov/portal/gsp/preview/43
- Montecito Groundwater Basin GSA. (2022). Groundwater Sustainability Plan for the Montecito Groundwater Basin. <u>https://sgma.water.ca.gov/portal/gsp/preview/155</u>
- PLSS Sections. Available from (<u>https://catalog.data.gov/dataset/blm-national-public-land-survey-system-polygons</u>). Accessed September 7, 2022.
- Santa Monica Basin GSA. (2022). Groundwater Sustainability Plan for the Santa Monica Basin. https://sgma.water.ca.gov/portal/gsp/preview/129
- SGMA Data Viewer, accessed 5 January 2024.

https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#gwlevels.

- Sonoma Valley GSA. (2022). Groundwater Sustainability Plan for the Sonoma Valley Basin. https://sgma.water.ca.gov/portal/gsp/preview/101
- Western Municipal Water District GSA Riverside-Arlington. (2022). Groundwater Sustainability Plan for the Riverside-Arlington Basin. <u>https://sgma.water.ca.gov/portal/gsp/preview/144</u>

United States Geological Survey (USGS). (2024). California Water Science Center's Central Valley Spatial Database, accessed February 5, 2024. <u>https://ca.water.usgs.gov/projects/central-valley/central-valley-spatial-database.html</u>